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Finite element analysis of folds

By O. STEPHANSSON
Department of Rock Mechanics, University of Luled, Luled, Sweden

\

Finite element analysis of the time-dependent deformations of layered viscous solids
serves as the basis of the study of the mechanics of folding. The progressive development
of folds by buckling in single and multilayer models compressed parallel to the layering
is reviewed. Fold geometries are shown to vary from parallel, for large viscous con-
trasts, to nearly similar, for low contrasts. For models with the same viscosity contrast
the geometry depends upon the wavelength/thickness ratio, so that thin-layer folds
behave in the most ‘competent’ fashion with a great amount of buckle shortening.

The development of stresses around folds is discussed. As the fold grows the principal
stresses rotate and the magnitude changes quite drastically for models with high vis-
cosity contrast. These folds also have the gradient of mean stress directed perpendicular
to the layer in the hinge part of the competent layer. The heterogeneous stress dis-
tribution, as it appears in a fold structure, generates a free energy gradient, and
diffusion current will tend to bring the system to a state of equilibrium by one or
more of the following events: (1) introduction of new mineral species; (2) poly-
morphic phase changes; (3) a change in chemical composition and (4) a change in
grain size.

Future development of the finite element analysis of folding is discussed.
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INTRODUCTION

One of the chief objectives of structural geology is the study of the mechanics of the past and
present motion of matter in the Earth’s crust. In the case of many geological structures, it would
be desirable to study the relationships between the present observed geometries, their initial
form, and the stress distribution under which they developed. The development of digital com-
puters has made possible the use of numerical computer-based methods to solve complex
continuum problems. One of them, the finite element method, is a general method of structural
analysis, in which a continuum or continuous structure is replaced by a finite number of
elements interconnected at a finite number of nodal points. The method can be used to
determine the displacement of the nodal points, and the stresses within the elements developed
in two- or three-dimensional models of arbitrary geometry and material property.

The basic understanding of the mechanism of fold formation came from the theoretical
analyses of viscous buckling made by Biot (1961, 1965) and Ramberg (1961, 1964). Their
work concerns only the instantaneous development of folds from initial irregularities in the
layers, which can be considered to be the sum of a harmonic series of sine and cosine waves of
different wavelengths and amplitudes. One assumption of the theory is that the amplitudes of
the initial sinusoidal waves or components of an harmonic series must be small, and that
a dominant wavelength is most likely to appear in a given system. This dominant wavelength,
being that of the sinusoidal wave which is initially amplified the most, has been used as a starting
situation for most of the finite-element analysis of buckling folds, e.g. Dieterich & Carter (1969),
Stephansson & Berner (1971), Hudleston & Stephansson (1973), Stephansson (1974). This
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paper examines the changes in fold shape, strain, and various parameters of stress including
principal, deviatory, shear and mean stresses in folded models produced by finite-element
analysis.

FoLD-SHAPE DEVELOPMENT

Dieterich & Carter (1969) and Dieterich (1969) studied the development of folds to large
amplitudes in viscous layers set in a less viscous medium by the application of finite-element
analysis. This was the first application of the method to problems in structural geology. Compu-
tations were made with viscosity contrasts of 42/1 and 17.5/1 between the competent layer and
the matrix. Finite strain and stress fields were derived throughout the folding history for folds
in layers which were initialy in the form of low-amplitude sine waves at the dominant wave-
length/thickness ratio. Layer shortening occurred in the early stages of folding and was greatest
in the case of the lower viscosity contrast. At the higher viscosity contrast, 42/1, very slight
variations in thickness with dip were detectable at high amplitudes. At the lower viscosity
contrast very pronounced thickening in the hinges, and thinning in the limbs of the folds were
apparent. The model material used in this study was a linearly viscous fluid.

Parrish (1973) extended the linear model to a nonlinear one, and folded a viscous layer
according to a nonlinear flow law of the form

¢ = Aexp (—Q[RT)o™,

where ¢ is the strain rate, 4, n, material constants, @, activation energy for creep, R, gas con-
stant, 7, temperature and o, difference between maximum and minimum compressive stresses.
The creep law is in agreement with the experimental results of rock deformation. The fold
model had a wavelength of thickness ratio of 9:1, which is slightly greater than the 8:1 ratio
predicted by the theoretical formula for buckling instability using the viscosity contrast of 12.
The resulting fold geometry resembles the linear models in that a broad open concentric geo-
metry developed, which is due to the fact that the power law increased flow in the inner hinge
and decreased flow in the outer hinge. The overall thickness of the layer increases by 35 9, of
its original thickness during the deformation of 90 %, shortening.

Hudleston & Stephansson (1973) studied three single-layer models for a viscosity contrast
between layer and matrix given by p,/u#, = 10, where , is the viscosity of the layer. In one
model the wavelength/thickness ratio, L%, was 7.4, as predicted for the dominant folds at this
viscosity contrast by the theoretical expression of Biot (1961) and Ramberg (1961). In the other
two models the L]k ratios were taken as 4.0 and 15.1. The progressive growth of the fold shows
that the geometry depends upon the L/h ratio so that flattening dominates the thick-layer
model, whereas a large amount of buckle shortening accompanies the deformation of the thin
layer. This is illustrated in figure 1, where the changes in limb dip, amplitude and arc-length
with total shortening in the three models are recorded curves A, B, C. It is apparent from
figure 1 that the thin-layer fold has behaved in the most ‘competent’ fashion and the thick-
layer fold in the least ‘competent’.

The progressive growth of folds with viscosity contrasts given by u,/u, = 10, 100 and 1000
are shown in figure 2. For the models with the contrast 100 and 1000 the folds maintain an almost
parallel shape, and follow a path of development smilar to that traced by the dominant wave-
length folds in a numerical study made by Chapple (1968). Folds developed in slightly com-
pressible material show a slight thinning in the hinge regions. This was demonstrated in the
finite-element analysis of a multilayer fold model by Stephansson & Berner (1971).
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FINITE ELEMENT ANALYSIS OF FOLDS 155

Summarizing the results of foldshape development from the finite element models, layer
shortening dominates in the early stages of folding and is greatest in the case of low viscosity
contrast. Low viscosity contrast emphasizes thickening in the hinges and thinning in the limbs.
For models with the same viscosity contrast the geometry depends upon the wavelength/thick-
ness ratio so that flattening dominates the thick layer model. For models with high viscosity
contrast the folds maintain an almost parallel shape with small deviations depending upon the
compressibility of the material. Finally, the fold geometry and configuration of the strain field
are affected somewhat by the choice of the initial amplitude.
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Ficure 1. Changes of limb dip, amplitude and arc-length, with overall shortening for finite element models
at different viscosity contrasts and wavelength/thickness ratios. 4, and §;, are the initial amplitude and
arc-length. After Hudleston & Stephansson (1973).
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Dieterich (1969) studied the possible relation between the orientation or geometry of axial-
plane foliation, and the orientation of stress and finite strain in the vicinity of folds. He found
that the directions perpendicular to €;, the maximum principal component of compressive
strain, in the model closely coincide with the natural cleavage pattern throughout the model.
The fanning and refraction of the minimum principal component of compressive strain, s,
in the matrix and folded layer were considerably weaker for models with a lower contrast in
viscosity. It is therefore concluded that axial-plane foliations in nearly concentric folds form in
response to total strain, and develop perpendicular to the directions of maximum total
shortening.
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F1cure 2. Single-layer buckle folds produced by finite element analysis.
Layer parallel shortening increases with decreasing viscosity contrast.

Halps Alk
a 1000 34.6
b 100 16.0
c 10 7.4

PRINCIPAL STRESSES AROUND FOLDS

The geometry of folds and the distribution of stresses are found from each of the strain incre-
ments during modelling. For models with a large viscosity contrast, the principal compressive
stresses within the competent layer are initially oriented parallel to the layer and are of uni-
formly large magnitude. As the fold grows, the principal stresses rotate to larger angles to the
layer and the magnitude changes quite drastically. In the limbs of the folded layer the maximum
principal stress rotates to larger angles to the layer. After a certain amount of total strain at
about 15 %, for the layer with the viscosity contrast of 42, the principal stresses change in the
outermost portion of the fold hinge, where the extension parallel to the layer causes the princi-
pal compressive stress to become oriented normal to the layer. Along the inner portion of the
fold hinge the principal compressive stress is of large magnitude, and remains almost parallel
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to the layer during the folding. For models with a slight viscosity contrast the stresses remain
nearly parallel to the direction of compression throughout the folding. The stress differences
between layer and matrix are of the same magnitude as the viscosity contrast. According to
Dieterich & Carter (1969) there is no region of relative tension along the outer portion of the
hinge if the viscosity contrast is 5 to 1 or less. The stress distribution in the nonlinear finite
element fold model of Parrish (1973) is similar to the linear models.

Finite element analysis of multilayer fold systems by Stephansson & Berner (1971) indicated
great differences in stress distribution between folds produced in compressible and incompres-
sible material. The orientation and magnitude of the principal stresses for the model in com-
pressible material (¢é;/¢; = 0.33) are in agreement with the results of Dieterich & Carter (1969)
and Dieterich (1969), whereas the stress distribution in the case of incompressible material
properties seems to indicate an unstable situation in the analysis.

In a review of studies of quartz deformation lamellae and calcite twin lamellae fabrics from
natural folds (Dieterich & Carter 1969), it was found that the principal stress directions
inferred from the fabrics are compatible with the stress directions in the fold models. The
inferred direction of principal stress on the limbs of the natural folds is inclined to the layering
in the same sense as in the models, but in the natural folds the angle between the principal stress
and the layering is consistently smaller. The interpretations were offered in Dieterich & Carter
(1969) that the fabrics are controlled by both the relative magnitudes and the orientations of
the principal stresses, and that the fabrics are cumulative, having formed during the entire
deformation. Later Dieterich (1970) suggested that the stress directions inferred from fabric
maxima show the average of the stress directions inferred from fabric maxima show the average
of the stress directions for the entire deformation, and that these directions more closely corres-
pond to finite strain axes than to stresses at any given instant in the deformation. Hence, the
conclusions imply that scatter in a fabric diagram may reflect the variation of stress orientation
with time. These problems need to be studied in more detail, as does the problem of the extent
to which the early formed minerals have been rotated during folding. Summarizing the results
of distribution of principal stresses, the direction of the compressive stresses lies subparallel to
the layer everywhere in the model during the low-amplitude stage of folding. As the fold
develops, buckling becomes the dominant mechanism of layer deformation in models with high
viscosity contrast. Stretching of the layer on the outside of the fold hinge takes place, and the
principal compressive stress (0,) becomes oriented normal to the layering. On the limbs of the
fold, o, rotates to increasingly larger angles to the layer as the fold grows. For models with
a low viscosity contrast the stresses remain nearly parallel to the direction of compression
throughout the folding. Stress directions inferred from fabric maxima of folded rocks show the
average of the stress directions for the entire deformation, and that these directions are formed
by either finite strain or by the magnitude and direction of principal stresses during folding.
The application of a nonlinear flow law in the fold model does not significantly alter the stress
orientations during the fold history.

DISTRIBUTION OF SHEAR STRESSES AND DEVIATORY STRESSES

Folding implies inhomogeneous strain, and the axes of stress and finite strain do not coincide.
As pointed out by Dieterich (1969), this means that, during folding shear stresses act across the
surfaces of the axial-plane foliation formed perpendicular to the direction of maximum
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compressive strain. Slippage may occur along those for which cleavage has formed, in response
to the shear stress.

The distribution of principal deviatory stresses o; = 0y, — @ and oy = 0, —0, where o, and
o, are the principal stresses and o the mean stress, are shown in figure 3 for a single-layer fold,
with a viscosity contrast of 100/1 between layer and matrix. A layer-parallel pattern of the lines
with equal deviatory stress is shown in the hinge zone. The pattern resembles the distribution
of mean stress, but now with opposite sign, Stephansson (1974, fig. 3). In the shear stress,
Tmax = 3(0y—03), we note a layer-parallel pattern of the lines of equal shear stress with
increasing values towards the surfaces of the folded layer. A singular point, i.e. a point
where the two principal stresses are zero, is found at the centre of the layer in the hinge region.
These results are different from the stress distribution in a folded layer of gelatin affected by
gravity. By using the photo-elastic technique Currie ¢t al. (1962) found the highest values
of shear stresses in the limb area and at the outer portions of the fold hinge.

Ficure 3. Deviatoric stresses (07, 03) and maximum shear stress of a competent layer in
a single-layer fold with a viscosity contrast of 100/1.

MEAN STRESSES IN FOLDED MODELS

The distribution of the mean stress & = (o, + 0,4 ;) for single-layer and multilayer fold
structures were studied by Stephansson (1974). Two models were studied for a viscosity contrast
between layer and matrix given by the ratio u,/u, = 100, where y, is the viscosity of the layer.
One of them, a multilayer model consisting of three competent layers surrounded by incom-
petent layers and subjected to a small shortening strain rate across the axial surface, is
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demonstrated in figure 4. The incompetent layers have twice the thickness of the competent
layers and all of them have a fold geometry of similar type.

From the mean stress distribution as shown in figure 4 we note a great difference in the
direction of the isopachs (lines of constant mean stress) for the competent layers and the
interlayers. The isopachs for the competent layers show a layer-parallel pattern, with the
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Ficure 4. Distribution of mean stress in a multilayer model; viscosity contrast of 100/1 between
the competent layers (stippled) and the less competent interlayers.
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highest value in the similarly folded competent layer of the inner arc of the model. In this study
the compressive stresses are by definition negative, and the inner arc of the fold hinge shows
the maximum value of the compressive mean stress which also causes a volume increase. The
figure indicates that the fold limbs show a moderate compressive mean stress, and that the line
of zero mean stress comes nearer the limb of the outer arc layer.

Isopachs of the less competent interlayers are directed almost perpendicular to the layer
surfaces, which causes a layer-parallel gradient of the mean stress with lowest value at the hinge
zone.

The results in figure 4 show that the mean stress in the innermost folded layer varies from
—100 to +50 in the hinge zone, i.e. for a folded sequence with the viscosity 10% Pa s (10?2 P)
surrounded by rocks with the viscosity 10'® Pa s (102 P) the difference in pressure between the
outer and inner arcs would be slightly more than 15 MPa (150 bar). The corresponding
pressure difference between the limb and hinge of the incompetent layer is of the order of
0.5 MPa (5 bar.)

Stephansson (1974) studied the mean stress distribution in a fold with a viscosity contrast of
10/1 and deformed to an overall shortening of 60 %,. In the folded layer all mean stresses are
compressive and decreasing along the axial surface from the inner to the outer arc. Here the
isopachs are oriented parallel to the direction of compression. The stress pattern in the matrix
goes from a minimum value at the outer arc to a maximum in the area of the inflexion point
and decreases again towards the inner arc. At a distance in the matrix of about one wavelength
from the folded layer, the stresses are uniform and of the same value.

To sum up, for folds with high viscosity ratios the gradient of the mean stress in the hinge
part of the competent layer is directed perpendicular to the layer. In the limb zone the mean
stress is more uniform and of lower magnitude. The incompetent layers in a folded multilayer
sequence show a mean stress gradient parallel to the layer and the pressure minimum is located
at the hinge zone. In a folded layer with low viscosity contrast all mean stresses are compressive
and decreasing along the axial surface from the inner to the outer arc.

Stephansson (1974) demonstrated that recrystallization of folded rocks under non-hydrostatic
stress conditions will result in geochemical mass transport and certain mineral distribution
and associations which are related to the mean stress distribution. A heterogeneous stress distri-
bution, such as appears in a fold structure, generates free-energy gradients, and diffusion
currents will tend to bring the system to the same state of equilibrium as that which would
develop by mechanical-transport processes. The endeavour to achieve equilibrium by lowering
the free energy may be related to one or more of the following events: (1) the introduction of
new mineral species; (2) a change in the volume of a mineral due to polymorphic phase changes;
(3) a change in the chemical composition of individual minerals or co-existing mixed crystals
containing the same exchangeable ions; (4) a change in grain size. In the study by Stephans-
son (1974) the variation in mineral composition bulk chemical composition, chemical com-
position of a mineral and grain size due to folding were demonstrated with examples taken
from the literature.
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FUTURE DEVELOPMENT OF THE FINITE ELEMENT ANALYSIS OF FOLDING

The application of the finite element technique has been successful in the study of shape
development and stress distribution in a variety of single- and multilayer fold models. For
example, the finite deformations which produce large-amplitude folds and the related area of
interpretation of fabric elements, e.g. cleavages, lineations and variations of chemical composi-
tion in different parts of folds. Future progress is likely to take place along one or more of the
following lines: (1) application of recent developments in the finite element technique; (2) more
realistic loadings of the models; (3) testing with different flow laws; (4) simulation of rock
anisotropies.

As pointed out by Zienkiewicz in this volume, the application of the finite element method
in the field geological studies is fairly recent and limited. So far, the structural geologists have
been problem-oriented in their studies and many problems remain to be studied with the present
technique. The application of three-dimensional finite element models and models with more
sophisticated elements and meshes has started.

The finite element technique offers a possibility of a complex loading of the model. So far,
simple buckling has been the only loading applied to folding. Development of folds by simple
shear or a combination of pure shear and simple shear need to be studied, as does the effect of
gravity on fold shape and finite strain and stress distribution. Any of the loadings can be
studied with the present techniques.

A nonlinear finite element fold model was presented by Parrish (1973). The result of this
study, as well as those of previous linear models, suggests that the application of a single flow
law throughout the folding is not sufficient to model most natural rocks. He therefore suggests
the application of different flow laws to different parts of the folded layer and matrix.

Simulation of rock anisotropies during the entire history of deformation has not been tested
so far. Introduction of different joint elements in the model to simulate cleavage is a possible
method. Mineral anisotropy, fabric rotation and plastic flow can easily be modelled with the
present technique.
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